Individual Quantum Probes for Optimal Thermometry.
نویسندگان
چکیده
The unknown temperature of a sample can be estimated with minimal disturbance by putting it in thermal contact with an individual quantum probe. If the interaction time is sufficiently long so that the probe thermalizes, the temperature can be read-out directly from its steady state. Here we prove that the optimal quantum probe, acting as a thermometer with maximal thermal sensitivity, is an effective two-level atom with a maximally degenerate excited state. When the total interaction time is insufficient to produce full thermalization, we optimize the estimation protocol by breaking it down into sequential stages of probe preparation, thermal contact, and measurement. We observe that frequently interrogated probes initialized in the ground state achieve the best performance. For both fully and partly thermalized thermometers, the sensitivity grows significantly with the number of levels, though optimization over their energy spectrum remains always crucial.
منابع مشابه
Simulating and Optimising Quantum Thermometry Using Single Photons
A classical thermometer typically works by exchanging energy with the system being measured until it comes to equilibrium, at which point the readout is related to the final energy state of the thermometer. A recent paper noted that with a quantum thermometer consisting of a single spin/qubit, temperature discrimination is better achieved at finite times rather than once equilibration is essent...
متن کاملOptical diagnostics for thin film processing.
Optical diagnostics are used to probe the plasma or neutral gas above the substrate, particles in the gas or on the surface, the film surface and reactor walls, the film itself, and the substrate during thin film processing. The development and application of optical probes are highlighted, in particular for analyzing plasma/gas phase intermediates and products and film composition, and perform...
متن کاملIntracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry.
Measuring intracellular temperature is critical to understanding many cellular functions but still remains challenging. Here, we present a technique-fluorescence-assisted photoacoustic thermometry (FAPT)-for intracellular temperature mapping applications. To demonstrate FAPT, we monitored the intracellular temperature distribution of HeLa cells with sub-degree (0.7 °C) temperature resolution an...
متن کاملThermometry at the nanoscale.
Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples...
متن کاملThermometry studies of radio-frequency induced hyperthermia on hydrogel based neck phantoms.
A cylindrical phantom, resembling average human neck, was prepared by using hydrogel sheets containing vinyl and polysaccharide. The phantom was used to obtain temperature distributions for 6 values of input power of radio frequency (RF) at 8MHz,by invasive thermometry technique, using thermistor probes. The inclusion of cervical vertebrae and calcium carbonate pieces (human bone representative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 114 22 شماره
صفحات -
تاریخ انتشار 2015